Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
J Healthc Eng ; 2021: 1002799, 2021.
Article in English | MEDLINE | ID: covidwho-1571444

ABSTRACT

Deep learning has emerged as a promising technique for a variety of elements of infectious disease monitoring and detection, including tuberculosis. We built a deep convolutional neural network (CNN) model to assess the generalizability of the deep learning model using a publicly accessible tuberculosis dataset. This study was able to reliably detect tuberculosis (TB) from chest X-ray images by utilizing image preprocessing, data augmentation, and deep learning classification techniques. Four distinct deep CNNs (Xception, InceptionV3, InceptionResNetV2, and MobileNetV2) were trained, validated, and evaluated for the classification of tuberculosis and nontuberculosis cases using transfer learning from their pretrained starting weights. With an F1-score of 99 percent, InceptionResNetV2 had the highest accuracy. This research is more accurate than earlier published work. Additionally, it outperforms all other models in terms of reliability. The suggested approach, with its state-of-the-art performance, may be helpful for computer-assisted rapid TB detection.


Subject(s)
COVID-19 , Deep Learning , Tuberculosis , Humans , Neural Networks, Computer , Reproducibility of Results , Tuberculosis/diagnostic imaging
2.
Mathematical Problems in Engineering ; : 1-8, 2021.
Article in English | Academic Search Complete | ID: covidwho-1238615

ABSTRACT

The COVID-19 pandemic has wreaked havoc in the daily life of human beings and devastated many economies worldwide, claiming millions of lives so far. Studies on COVID-19 have shown that older adults and people with a history of various medical issues, specifically prior cases of pneumonia, are at a higher risk of developing severe complications from COVID-19. As pneumonia is a common type of infection that spreads in the lungs, doctors usually perform chest X-ray to identify the infected regions of the lungs. In this study, machine learning tools such as LabelBinarizer are used to perform one-hot encoding on the labeled chest X-ray images and transform them into categorical form using Python's to_categorical tool. Subsequently, various deep learning features such as convolutional neural network (CNN), VGG16, AveragePooling2D, dropout, flatten, dense, and input are used to build a detection model. Adam is used as an optimizer, which can be further applied to predict pneumonia in COVID-19 patients. The model predicted pneumonia with an average accuracy of 91.69%, sensitivity of 95.92%, and specificity of 100%. The model also efficiently reduces training loss and increases accuracy. [ABSTRACT FROM AUTHOR] Copyright of Mathematical Problems in Engineering is the property of Hindawi Limited and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

SELECTION OF CITATIONS
SEARCH DETAIL